IBM 5nm nanosheet transistors

Sim, foi apresentado no inicío do mês no VLSI Technology and Circuits conference em Kyoto, Japão.

IBM Research Alliance Builds New Transistor for 5nm Technology
Scientists working as part of the IBM-led Research Alliance at the SUNY Polytechnic Institute Colleges of Nanoscale Science and Engineering’s NanoTech Complex in Albany, NY achieved the breakthrough by using stacks of silicon nanosheets as the device structure of the transistor, instead of the standard FinFET architecture, which is the blueprint for the semiconductor industry up through 7nm node technology.

The silicon nanosheet transistor demonstration, as detailed in the Research Alliance paperStacked Nanosheet Gate-All-Around Transistor to Enable Scaling Beyond FinFET, and published by VLSI, proves that 5nm chips are possible, more powerful, and not too far off in the future.

Compared to the leading edge 10nm technology available in the market, a nanosheet-based 5nm technology can deliver 40 percent performance enhancement at fixed power, or 75 percent power savings at matched performance.

https://www-03.ibm.com/press/us/en/pressrelease/52531.wss
 
Quote sobre o artigo que coloquei no meu primeiro post:
Dr. Huiming Bu, Director of Silicon Integration and Device Research at IBM Research says the approach involves placing the nanosheets in horizontal layers during chip fabrication. “The change from today’s vertical fin architecture to horizontal layers of silicon opened a fourth gate on the transistor that enabled superior electrical signals to pass through and between other transistors on a chip,” Dr. Bu told TOP500 News.

Scientists at IBM Research and its partner SUNY Polytechnic Institute (Colleges of Nanoscale Science and Engineering’s NanoTech Complex) have been working on nanosheet semiconductors in the lab for more than 10 years. But this week’s announcement appears to put the technology on a glide path to commercialization. According to researchers, this is the first time anyone has demonstrated the feasibility of building chips with these nanosheets that will outperform comparable devices built with FinFET technology.

The 5nm chips will employ the same Extreme Ultraviolet (EUV) lithography used for IBM’s 7nm test node chips that the company unveiled in 2015. That technology would deliver 20 billion transistors on a chip, while this new nanosheet approach would increase that to 30 billion.

According to the announcement, the technology also provides an extra benefit. Researchers have found a way to use EUV technology to adjust the width of the nanosheets within a single manufacturing process or chip design. The practical effect of this technique is described as follows:

“This adjustability permits the fine-tuning of performance and power for specific circuits – something not possible with today’s FinFET transistor architecture production, which is limited by its current-carrying fin height. Therefore, while FinFET chips can scale to 5nm, simply reducing the amount of space between fins does not provide increased current flow for additional performance.”

FinFET, short for Fin Field Effect Transistor, is the 3D semiconductor technology Intel began using in commercial chips in 2012, and adopted over the following couple of years by GlobalFoundries and TSMC, among others. Most chip manufacturers plan to use some version of FinFET through the 7nm node. But as the transistor pitch shrinks, taller and thinner fin structures are needed, which makes their manufacture increasingly difficult.

But if all goes as planned, Samsung and Globalfoundaries will be able ditch FinFET and move to nanosheet technology for the 5nm node. As IBM alliance partners, both of these chipmakers will have full access to this technology, since they share patents associated with the nanosheet transistor structure and fabrication.
 
Back
Topo